加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

人工智能领域预测与预测

发布时间:2021-07-05 16:30:58 所属栏目:大数据 来源:互联网
导读:2019里人工智能领域会出现怎样的演变呢?相比之前几年会有什么样的变化呢? 人工智能正主导着全球企业的创新无论是大型企业集团还是年轻的初创企业。据市场研究报告《从技术和垂直行业看人工智能市场全球机会分析和行业预测》称,2018年至2025年,全球人工智
  2019里人工智能领域会出现怎样的演变呢?相比之前几年会有什么样的变化呢?
 
  人工智能正主导着全球企业的创新——无论是大型企业集团还是年轻的初创企业。据市场研究报告《从技术和垂直行业看人工智能市场——全球机会分析和行业预测》称,2018年至2025年,全球人工智能市场规模预计将从2016年的40.65亿美元增长至1694.11亿美元,复合年增长率达到55.6%。该报告按技术、行业垂直和地区来划分人工智能市场。人工智能技术被细分为机器学习、自然语言处理、图像处理和语音识别。2016年,在营收方面,机器学习领域主导了人工智能市场,得益于人工智能行业解决方案的需求增加,预计未来几年这一趋势将会延续下去。根据Statista的数据,最大的营收部分来自面向企业应用程序市场的人工智能。
 
  以下是对2019年人工智能领域的预测:
 
  IBM、谷歌、微软、亚马逊以及机器学习API提供商将发布更具包容性的数据集,以应对人工智能内嵌的歧视和偏见问题
 
  机器学习是人工智能的主要形式,已被成功应用到多个不同的领域,比如亚马逊智能助手Alexa上的语音识别,Facebook自动标记照片功能的人脸识别,无人驾驶汽车当中的行人检测,甚至基于你访问电子商务网站的记录决定向你展示鞋子广告等。在机器学习中,决策是从人类决策和标签的现有数据记录中学习的。因此,为了让计算机区分狗和猫,我们向它展示了许多带标记的狗的图像和许多带标记的猫的图像,让它学习了解二者之间的区别。这种看似无害的方法本身带来了一个严重的问题——偏见。如果我们盲目地把人类的标记和决策输入电脑,电脑可能会完全复制我们的偏见。臭名昭着的微软Tay机器人便是前车之鉴。
 
  更糟糕但更微妙的是,来自数据本身的偏见并不能代表我们想要了解的广大群体。例如,今年早些时候,乔伊·布洛沃米(Joy Buolawumi)和蒂尼特·格布鲁(Timnit Gebru)的研究表明,在对一个人的性别进行分类的任务中,主流的商用计算机视觉产品在被灌输浅肤色男性的图像时表现最佳,在被灌输深肤色女性的图像时表现最差。如果我们训练这些分类器所用的数据集没有包含足够多的正确标记的有色人种,也没有捕捉到更广泛的文化差异(不管来自哪里),这会是一个巨大的问题。
 
  在这些非包容性数据集上训练的机器学习模型所做的关于样本不足的人的决策显然是有缺陷的。2019年,我们将会看到拥有主流计算机视觉产品的大公司公开发布更具包容性的数据集。这些数据集将在地理、种族、性别、文化概念以及其他维度上变得更加均衡,它们的公开发布也将驱动研究者展开研究将人工智能的偏见最小化。
 
  随着让人工智能的决策变得更容易解释的产品逐渐成为主流,医疗和金融服务领域将会更多地采用人工智能
 
  当人工智能基于算法作出可轻易解释的决策时,生活要简单得多。例如,算法首先了解你是否头痛,然后看看你是否发烧,然后得出你患了流感的结论,这个过程是可以解释的。只要算法如何作出决定是可以解释的,无论它的预测是对是错,它都具有巨大的价值。
 
  在像医学这样我们可能会用机器做出生死攸关的决定的领域,能够追溯理解为什么机器会给出特定的行动建议显然非常重要。在金融等领域,这一点也至关重要。如果人工智能算法拒绝向某人提供贷款,我们很有必要理解其中的原因——尤其重要的是要确保它不存在毫无缘由的歧视。随着人工智能变得越来越成功,它更依赖于一种被称为“深度学习”的技术,这种技术利用了许多的神经网络层(因此其名称带有“深度”一词)。在这些系统中,没有明确的方法来解释发生了什么,以及机器的决策原因。这个系统就像一个极其精确的黑匣子,可以接收一系列症状、测量数据、图像以及病人的状态和病史数据,并能输出高度准确的诊断结果。
 
  例如,谷歌AI可以通过检查你的眼睛来预测你是否有患心脏病的风险!你的眼睛到底有什么毛病?没有人会轻易认为自己的眼睛有毛病!2019年,随着初创企业和大公司寻求推动金融和医疗等行业采用人工智能,将会有专门针对这些行业的商业支持系统,帮助我们反思深层神经网络,并让我们更好地解释人工智能的预测。企业将会尝试将这些预测的解释流程完全自动化,但成功的做法将会是,使得人类能够调查探究“黑盒子”,更好地理解它的决策,这样机器背后的人类可以提出自己的解释。
 
  算法VS算法。除了“假新闻”,还会有其它领域的人工智能系统受到基于人工智能的攻击
 

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读