人工智能展望
发布时间:2021-07-05 16:36:05 所属栏目:大数据 来源:互联网
导读:从隐私和数据偏见监管到模型训练和自助人工智能等问题,人们期待人工智能领域得到更加广泛的关键进展。 人工智能技术在2018年迅速发展。即使没有关注这项技术的分析师,也很难摆脱流行文化、媒体、政治的影响,当然还有Alexa等个人技术的人工智能热潮。 考虑
从隐私和数据偏见监管到模型训练和自助人工智能等问题,人们期待人工智能领域得到更加广泛的关键进展。
人工智能技术在2018年迅速发展。即使没有关注这项技术的分析师,也很难摆脱流行文化、媒体、政治的影响,当然还有Alexa等个人技术的人工智能热潮。
考虑到这一点,分析机构对2019年人工智能发展进行了预测,在此还列出了未来几年内对人工智能技术的长期详细的趋势的预测。并在多方面勾勒出人工智能技术的发展方向:
人工智能将发挥它的魔力,无论是好坏,都将更深入到人们的生活中:如今,人工智能产生的音频很难与人类发出的声音区分,正如谷歌公司今年公开展示新的双工数字助理技术。同样,人工智能生成的“deepfake”视频、音频和机器人技术也让人们难以区分。
到2019年,这些“产生式人工智能”技术将进一步改进。更重要的是,它们将嵌入到越来越多人工智能的产品和服务中,并通过并入开发人员的AI DevOps工具链来实现。这项技术的进步将引发更多的全球文化,激起更多的政治讨论,并为好莱坞的科幻小说编剧提供更多的素材,以便在他们的想象工厂中加工。
人工智能的相关法规即将出台:面部识别是人工智能最广泛、也是最具争议性的应用之一。随着面部识别在智能手机、智能相机和在线媒体应用中无处不在,肯定会出台针对人工智能应用的更多法规。在2019年,许多国家和地区可能会对面部识别进行监管,重点关注隐私和偏见问题。许多关于面部识别的规定将侧重于赋予消费者选择退出其使用的权利;检查如何用于面部识别;全面了解其面部数据的管理方式,并要求将其从企业数据库中永久清除。
一些新法规可能全面适用于面部识别的所有应用,而其他一些法规将在管理执法、医疗保健、电子商务、社会媒体、自主车辆和其他领域的现有规定范围内逐步应用。
人工智能开发框架在开放的行业生态系统中变得可以互换:标准AI DevOps抽象层的出现使更多开发人员能够使用他们希望的任何语言进行构建,并编译他们的工作,以便在任何框架、流水线和目标硬件、云计算或服务器平台中按照他们的意愿优化执行。过去几年中,广泛采用了诸如Keras之类的高级AI API、诸如ONNX之类的共享人工智能模型表示,以及诸如NNVM和TensorRT之类的跨平台人工智能模型编译器。在2019年,这些和其他标准人工智能管道抽象的采用将会扩展,从而为开发生态系统提供支持,减少锁定人工智能解决方案提供商的垂直专有堆栈的可能性。
自动化的端到端AI DevOps流水线将成为标准实践:人工智能已成为许多企业的工业化流程,创建业界优先的工具,可以实现从数据准备到建模、训练和服务的每个流程的自动化。在2019年,人工智能工具将自动化扩展到以往需要专家判断的任务,例如特征工程,并且将通过允许专家在声明性功能指定驱动的单击可视化工具中构建、点击、训练和部署这些模型的工具来民主化对这些能力的访问。
人工智能正在成为一种工业化的运营业务功能:人工智能的工业化已经通过端到端的工具链自动化在各地的企业中占据了一席之地。在2019年,人们将看到人工智能工作台供应商通过产品区分工业级功能,诸如在线操作实验、自动模型基准测试、全天候A/B测试、连续挑战者部署、涡轮动力集成和生命周期模型治理等。
Kubernetes编排的容器正在成为人工智能管道不可或缺的一部分:许多人工智能工具供应商现在支持在云原生计算环境中构建和部署容器化统计模型。到2019年底,这个快速增长的细分市场中的大多数供应商将支持在越来越异构的管道中部署集成化的人工智能模型,以便在Kubernetes集群中进行编排。随着这一趋势的不断加剧,大多数工具供应商将实施新兴的Kubeflow项目,以支持框架、平台和云计算无关的数据科学DevOps工作流程。
主流人工智能开发框架将进行重新设计,以实现卓越的云计算到边缘计算性能:人工智能的神奇之处在于部分来自于在每个开发、运营和边缘平台中可用的最快运行时引擎中实现。在2019年,预计大多数云平台供应商将推出这个和其他主要人工智能框架的版本,这些框架旨在加速GPU中运行的所有AI DevOps管道功能,以及云计算到边缘计算环境中的其他主要硬件加速器。
谷歌公司将继续围绕其不断深化的TensorFlow堆栈推动数据科学行业工具链的发展:2018年,人工智能开发人员采用谷歌公司的开源TensorFlow框架,并且该公司在开发堆栈和参与人工智能社区参与演变方面进行了大量新投资。TensorFlow是主要的人工智能开发框架。预测在2019年,TensorFlow堆栈将提交给行业组织,以正式确定其未来的发展和治理。此外还预测,无论TensorFlow在开放源码项目生态系统中处于什么位置,它都将越来越多地与不断发展的Kubernetes容器化生态系统融合,其中大部分的重叠发生在以AI DevOps为中心的项目中,例如Kubeflow。 (编辑:宿州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |