加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

企业AI平台建设的最佳实践

发布时间:2021-07-23 17:34:53 所属栏目:大数据 来源:互联网
导读:智能可能是人工的,但这种趋势是真实的。人工智能已经成为企业实现许多目标的迫切需求的功能之一,从开发新产品和不同的产品,到提高现有产品和服务的速度、质量和效率。 人们很快发现人工智能代表了多种工具和技术。其中大部分都是利基产品,越来越多的产品
智能可能是人工的,但这种趋势是真实的。人工智能已经成为企业实现许多目标的迫切需求的功能之一,从开发新产品和不同的产品,到提高现有产品和服务的速度、质量和效率。
 
人们很快发现人工智能代表了多种工具和技术。其中大部分都是利基产品,越来越多的产品具有“即插即用”功能。然而,这些技术发生的变化比人们的预期还要快。同时,由于数据驱动的企业专注于构建不同类型的人工智能,他们面临着一些共同的挑战。
 
在某些情况下,人工智能项目花费的时间太长。这可能是由于一些经常出现的障碍,其中包括没有一个一致的平台,或者由于缺乏人才,以及缺乏干净、准确的数据来训练人工智能。还有一些则在展示具有良好价值的概念和证明,但由于缺乏正式的治理,组织仍然对将人工智能部署到生产中犹豫不决。虽然有些人可能无法确定强有力的用例,但其他人试图管理一组高度动态的用例。
 
企业将人工智能用于要求重大技术敏捷性和不确定性的业务模型中。
 
而处理这种复杂性可能就像在飞行中建造飞机一样。如果人们不确定需要什么,那么将如何决定投资方向?采用哪些解决方案能够满足这些需求?以及需要哪些资源来满足这些需求?答案在于开发企业级人工智能平台。
 
企业级人工智能平台
 
企业级人工智能平台是大规模加速企业级人工智能项目实施的生命周期的框架。它为组织提供了一种结构化且灵活的方式来创建当今和长期的人工智能驱动解决方案。它还使人工智能服务能够从概念证明扩展到生产规模系统。它通过面向服务和事件驱动架构世界的特定准则来实现整合。
 
如果设计良好,企业人工智能平台将促进人工智能科学家和工程师之间的更快、更高效和更有效的协作。它有助于以各种方式控制成本,避免重复工作,自动执行低价值任务,并提高所有工作的可重复性和可重用性。它还消除了一些成本昂贵的活动,即复制和提取数据以及管理数据质量。
 
更重要的是,企业人工智能平台可以帮助解决技能差距。它不仅成为新人入职的焦点,而且还有助于开发和支持人工智能科学家和机器学习工程师团队的最佳实践。而且,它可以帮助确保工作分配更均匀、更快完成。
 
在企业人工智能平台中,元素被组织为五个逻辑层:
 
•数据和集成层提供对企业数据的访问。这种数据访问是至关重要的,因为在采用人工智能过程中,开发人员不用人工编写规则。相反,机器正在根据它所访问的数据来学习规则。数据组件还包括数据转换和治理元素,以帮助管理数据存储库和数据源。数据源可以封装在可以在抽象层次与数据进行交互的服务中,为现有的平台数据本体提供单一的参考点。最重要的是,数据必须具有高质量,人工智能科学家必须能够在不依赖IT团队的情况下构建他们所需的数据流水线,其理想情况是采用简单的自助服务,以便他们可以根据需要进行实验。
 
•实验层是人工智能科学家开发、测试和重复假设的地方。良好的实验层为特征工程、特征选择、模型选择、模型优化和模型可解释性带来自动化。理念管理和模型管理是授权人工智能科学家合作和避免重复的关键。
 
•运营和部署层对于模型治理和部署非常重要。这就是进行模型风险评估的地方,以便模型治理团队或模型风险办公室可以验证,并查看模型证明模型的可解释性、模型偏差和公平性以及模型故障安全机制。操作层包含AI DevOps工程师和系统管理员的实验结果。它提供工具和机制来管理跨平台的各种模型和其他组件的“容器化”部署。它还能够监控模型性能的准确性。

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读