加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

AI、机器学习和深度学习:人们需要知道的一切

发布时间:2021-07-26 17:09:59 所属栏目:大数据 来源:互联网
导读:在人工智能应用方面,企业需要获取商业利益、构建技术框架和模型,以获得更好的商业成果。 在人工智能、机器学习和深度学习方面,目前有很多市场热议和技术探讨。大多数问题有的过于松散,有的过于数学化,有的过于笼统,有的过于专注于特定的应用程序,与业
 
•当企业的社交媒体总参与度达到12%时,开始将公众引导到组织的客户社区门户以实现客户的参与。
 
这些说明性操作就像GPS系统建议组织在旅途中进行的转弯以优化其设定的目标一样。
 
商业智能、统计数据和人工智能之间的关系
 
这是定义商业智能、统计信息和人工智能之间差异的一种方法:
 
•传统上,商业智能是面向查询的,并且依靠分析师来确定模式(例如最赚钱的客户,为什么他们最赚钱,它们与众不同的属性(例如年龄或工作类型)。
 
•统计数据还依赖于分析人员了解数据的属性(或结构)以在数据中找到有关总体的信息,但它在推断一般化方面增加了数学上的严谨性(例如,实际生活中的这些客户群体与样本数据中的客户群体之间是否存在差异)。
 
•人工智能、机器学习和深度学习依靠算法(而非分析师)来自主找到数据中的模式并启用预测和处方。
 
请注意,商业智能和人工智能,机器学习和深度学习可以做的更多。
 
虽然一方面使用统计建模,另一方面使用机器学习和深度学习来建立业务状况模型,但两者之间存在一些关键差异,尤其是:
 
•统计建模需要在输入和输出之间建立一个数学方程式。相比之下,机器学习和深度学习并不会尝试使用该数学方程;与其相反,它们只是尝试在给定输入的情况下重新创建输出。
 
•统计建模需要了解变量之间的关系,并对数据总体的统计属性进行假设。机器学习和深度学习则没有。
 
通常,由于统计建模需要数学方程式,并且需要了解数据之间的关系,因此统计模型在建立统计模型以研究和处理数据时需要花费相对较长的时间。但是,如果成功完成(即找到方程式并且很好地理解数据之间的统计关系),则该模型可能会致命。
 
另一方面,机器学习和深度学习模型的构建速度非常快,但启动时可能无法获得高性能。但是由于它们很容易在早期阶段构建,因此可以同时尝试许多算法,并不断尝试最有希望的算法,直到模型性能变得非常好为止。
 
机器学习和深度学习模型还具有额外的优势,即可以“独立”不断地从新数据中学习,从而提高其性能。
 
如果数据的性质发生变化,机器学习和深度学习模型只需对新数据进行再培训;而统计模型通常需要全部或部分重建。
 
机器学习和深度学习模型在解决高度非线性问题方面也很出色(人们很难做到这一点,因为这些方程太长了)。随着微细分成为规范(例如细分的客户群、大规模定制、个性化客户体验、个人和精准医疗),并且流程和根本原因分析变得越来越多方面和相互依赖,机器学习和深度学习的这一属性真的很有用。
 
人工智能、机器学习和深度学习有何不同
 
到目前为止,把人工智能、机器学习和深度学习结合在一起。但它们并不完全相同。
 
一般来说:
 
人工智能是机器执行人类智能特征任务的地方。它包括计划、理解语言、识别物体和声音、学习和解决问题。这可以是人工通用智能(AGI)或人工狭义智能(ANI)的形式。
 
•人工通用智能(AGI)具有人类智慧的所有特征,包括人们的所有感官(甚至更多)和推理能力,因此可以像人们一样思考。有些人将其描述为“认知”,例如C3PO等。
 
•人工狭义智能(ANI)具有人类智能的某些方面,但不是全部。它用于执行特定任务。例子包括Pinterest等服务中的图像分类和Facebook上的人脸识别。人工狭义智能(ANI)是大多数业务应用程序当前关注的焦点。
 
机器学习是指机器使用算法来学习和执行任务而无需进行显式编程(也就是说,不必向它们提供特定的业务规则来从数据中学习;换句话说,它们不需要诸如“如果看到X,就做Y”)。
 
深度学习是机器学习的子集,通常使用人工神经网络。深度学习的好处是,从理论上说,无需告知哪些数据元素(或机器学习中的“特征”很重要),但是大多数时候,它需要大量数据。
 
以识别手写数字为例,可以更好地理解显式编程、机器学习和深度学习之间的差异。对于人们来说,识别手写数字并不难。多年来,人们已经从父母、老师、兄弟姐妹和同学学到很多知识和技能。
 
现在假设让一台机器通过显式编程执行相同的操作。在显式编程中,必须告诉机器要查找的内容。例如,圆形对象为零,竖线为1,依此类推。但是,如果对象不是完美的圆形,或者末端没有连接而并不是一个完整的圆形,会发生什么?当直线不是竖直线而是向侧面倾斜时,或者该行的顶部有一个钩子(例如“ 1”)时,会发生什么?是数字7吗?手写字母的多种变体使编写一个明确的程序变得困难。组织将不断添加新的“业务规则”以说明差异。在机器学习方法中,将显示机器示例1s,2s等,并告诉它要寻找什么“特性”(重要特征)。特征工程很重要,重要特征的示例可以是圆的数量、直线的数量、直线的方向、直线相交的数量以及直线相交的位置。不重要特征的示例可能是颜色、长度、宽度和深度。假设组织为机器提供了正确的功能,并提供了示例和答案,则机器最终将自行了解这些功能对于不同数字的重要性,然后希望能够正确区分(或分类)数字。
 
需要注意,使用机器学习时,必须告诉机器重要的功能(即要查找的内容),因此机器与确定适当功能的人员一样好。
 
深度学习的承诺是,无需工作人员告诉机器要使用哪些功能(即哪些功能最重要),它就会自动发现这一点。需要做的就是为它提供所有功能,它会从中自动选择重要的功能。尽管这是一个明显的优势,但它是以高数据量要求和长时间培训的形式付出的代价,而这需要大量的计算处理能力。
 
人工智能模型概念综述
 
机器学习和深度学习模型背后的思想是,它们从给定的数据(他们以前看到的东西)中学习,然后可以概括为对新数据(他们以前没有看到的东西)做出正确的决策。
 
但是什么构成模型?模型的一种定义是由三个部分组成:
 
•数据:历史数据用于训练模型。例如,在学习弹钢琴时,输入的数据是不同的音符、不同类型的音乐、不同的作曲家风格等。
 
•算法:模型用于学习过程的一般规则。在钢琴示例中,组织的内部算法可能会告诉寻找音符,如何在琴键上移动手指、如何以及何时按下踏板等。
 
•超参数:这些是数据科学家为改善模型性能而进行调整的“旋钮”,它们并不是从数据中学习到的。再次以钢琴为例,超参数包括人们练习音乐作品的频率、练习的位置、一天中的练习时间,用于练习的钢琴等。这种想法是,调整这些“旋钮”可以提高其学习如何演奏音乐的能力。
 
将所有这些放在一起,便会构建一个钢琴演奏模型。从理论上讲,根据其训练水平,可以创作以前从未弹奏过的新音乐作品,并且可以演奏它们。
 
机器学习的类型
 
机器就像人一样可以通过不同的方式学习。在此将再次使用钢琴训练的例子进行解释:
 
•有人监督:钢琴教师向弹奏者展示或告诉其正确的演奏方法,以及纠正错误的演奏方法。在理想的情况下,将提供相同数量的示例,说明如何正确和错误地演奏方法。实质上,训练数据由要从一组预测变量(独立变量)中预测的目标/结果变量(或因变量)组成。使用这些变量集,将生成一个将输入映射到所需输出的函数。训练过程一直持续到模型在训练数据上达到期望的性能水平为止。监督培训的业务示例显示了已获批准或被拒绝(目标结果和决策)的贷款申请的系统示例(由信用历史、工作历史、资产所有权、收入和教育等预测变量组成)。
 
•无人监督:如果演奏者自己一个人在演奏,也就是说没有人教他如何弹钢琴,因此他可以根据自己的想法来决定对与错,以优化对其重要的参数,例如完成乐曲的速度,高音符与柔和音符的比率,或触按琴键的数量。本质上,数据点没有与之关联的标签来告知是对还是错。与其相反,目标是以某种方式组织数据或描述其结构。这可能意味着将其分组,或者寻找查看复杂数据的不同方法,从而使其看起来更简单或更有组织。通常,无监督学习在训练模型方面不如无监督学习有效,但是当没有标签存在时(换句话说,“正确”的答案是未知的),这可能是必要的。一个常见的商业例子是市场细分:通常不清楚什么是“正确”的市场细分,但每个营销人员都在寻找自然亲缘关系的细分,以便他们能够以正确的信息、提议和产品接近这些细分。
 
•半监督:受监督和无监督的组合。在没有足够监督数据的情况下使用此方法。在钢琴示例中,就会得到一些指导,但不会得到很多指导(可能是因为课程昂贵或老师人数不足)。
 
•强化:系统不会告知演奏者正确和错误的演奏方式,也不知道要优化的参数是什么,但是会告诉何时做对或错。在进行钢琴训练的情况下,当弹错音符或以不正确的节奏演奏时,钢琴教师可能会纠正,并且当演奏者弹奏得很好时,就会给予鼓励。强化学习现在非常流行,因为在某些情况下,每种情况下没有足够的监督数据,但是已知“正确”的答案。例如,在国际象棋游戏中,要记录到文档(标签)的移动过多。但是强化学习仍然可以告诉机器何时做出对与错的决定,进而赢得胜利(比如在国际象棋中捕捉棋子和强化位置)。

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读