加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

人工智能影响医疗保健行业的12个计划

发布时间:2021-07-28 11:33:40 所属栏目:大数据 来源:互联网
导读:根据济南站长网 Www.0531Zz.Com报道 人工智能有望成为医疗保健领域的转型力量。那么医生和患者如何从人工智能驱动工具的影响中获益? 如今的医疗保健行业已经十分成熟,可以进行一些重大变革。从慢性病和癌症到放射学和风险评估,医疗保健行业似乎有着无数的机
 
智能设备正在接管消费者环境,并且提供从冰箱内部的实时视频到可以检测驾驶员分心的汽车等各种设备。
 
在医疗环境中,智能设备对于监控ICU和其他地方的患者至关重要。使用人工智能来增强识别病情恶化的能力,例如表明败血症正在发展,或感觉到并发症的发展可以显著改善结果,并可能降低治疗成本。
 
布里格姆妇女医院(BWH)临床数据科学中心执行主任Mark Michalski博士说,“当我们谈论整合整个医疗保健系统的不同数据,需要进行整合,并产生警报,提醒重症监护室(ICU)医生尽早干预,这些数据的汇总不是人类医生可以做得很好的事情。将智能算法插入这些设备可以减少医生的认知负担,同时确保患者尽可能及时地接受护理。”
 
8.推进免疫疗法用于癌症治疗
 
免疫疗法是治疗癌症最有希望的方法之一。通过使用人体自身的免疫系统来攻击恶性肿瘤,患者可能能够战胜顽固的肿瘤。然而,只有少数患者对当前的免疫治疗方案有反应,肿瘤学家仍然没有一种精确可靠的方法来确定哪些患者将从该方案中受益。
 
机器学习算法及其合成高度复杂数据集的能力可能能够阐明针对个体独特基因构成的靶向治疗提供新的选择。
 
马萨诸塞州总医院(MGH)综合诊断中心计算病理学和技术开发主任Long Le博士解释说,“最近,最令人兴奋的发展是检查点抑制剂,它阻断了某些免疫细胞产生的蛋白质。但我们仍然不了解所有的问题,这非常复杂。我们肯定需要更多的患者数据。这些疗法相对较新,所以实际上并没有多少患者服用这些药物。因此,无论我们是需要在一个机构内还是跨多个机构集成数据,都将增加患者人数以推动建模过程的关键因素。”
 
9.将电子健康记录转变为可靠的风险预测指标
 
电子健康记录(HER)是患者数据的宝藏,但以准确、及时和可靠的方式提取和分析大量信息一直是提供商和开发人员不断面临的挑战。
 
数据质量和完整性问题,加上数据格式的混乱、结构化和非结构化输入以及不完整的记录,使得人们很难准确理解如何进行有意义的风险分层、预测分析和临床决策支持。
 
布里格姆妇女医院(BWH)紧急医学助理教授、哈佛医学院(HMS)助理教授Ziad Obermeyer博士说,“有一些艰难的工作是将数据整合到一个地方。但另一个问题是了解当人们预测电子健康记录(HER)中的一种疾病时会得到什么。人们可能会听说人工智能算法可以预测抑郁症或中风,但发现他们实际上预测的是中风费用增加。这与中风本身有很大不同。”
 
他继续说,“依靠核磁共振结果似乎可以提供更具体的数据集。但是现在必须考虑谁能负担得起核磁共振的成本?所以最终预测的并不是期望的结果。”
 
核磁共振分析已经产生了许多成功的风险评分和分层工具,特别是当研究人员采用深度学习技术来识别看似无关的数据集之间的新联系时。
 
但是,Obermeyer认为,确保这些算法不能确认数据中隐藏的偏见,这对于部署能够真正改善临床护理的工具至关重要。
 
他说:“最大的挑战是确保在我们开始打开黑盒并观察如何预测之前,需要确切地知道我们预测到了什么。”
 
10.通过可穿戴设备和个人设备监控健康状况
 
现在几乎所有的消费者都可以使用带有传感器的设备来收集有关健康具有价值的数据。从带有计步追踪器的智能手机到能够全天候跟踪心跳的可穿戴设备,随时可以生成越来越多的健康相关数据。
 
收集和分析这些数据,并通过应用程序和其他家庭监控设备补充患者提供的信息,可以为个人和人群健康提供独特的视角。
 
人工智能将在从这一庞大而多样的数据库中提取可操作的见解方面发挥重要作用。
 
但计算神经科学成果中心的联合主任、布里格姆妇女医院(BWH)神经外科医生Omar Arnaout博士说,帮助患者适应这种亲密、持续监测的数据可能需要额外的工作。
 
他说:“以往我们对数字数据的处理方式相当自由。但是,随着剑桥分析公司和Facebook这些公司发生数据泄露事件,人们将越来越谨慎地考虑与谁共享什么样的数据。”
 
他补充说,患者往往更信任他们的医生,而不是像Facebook这样的大公司,这可能有助于缓解为大规模研究计划提供数据的不适。
 
Arnaout说:“很有可能可穿戴数据将产生重大影响,因为人们的关注是非常偶然的,并且收集的数据非常粗糙。通过连续收集粒度数据,数据更有可能帮助医生更好地照顾患者。”
 
11.使智能手机成为强大的诊断工具
 
专家认为,继续利用便携式设备的强大功能,从智能手机和其他消费级资源中获取的图像将成为临床质量成像的一种重要补充,特别是在服务不足的地区或发展中国家。
 
手机摄像头的质量每年都在提高,并且可以生成可用于人工智能算法分析的图像。皮肤病学和眼科学是这一趋势的早期受益者。
 
英国的研究人员甚至开发了一种工具,通过分析儿童脸部的图像来识别发育性疾病。该算法可以检测离散的特征,例如儿童的下颌线、眼睛和鼻子的位置,以及其他可能表明面部异常的属性。目前,该工具可以将普通图像与90多种疾病进行匹配,以提供临床决策支持。
 
布里格姆妇女医院(BWH)的微型/纳米医学和数字健康实验室主任Hadi Shafiee博士说:“大多数人都配备了功能强大的手机,内置了许多不同的传感器。这对我们来说是一个很好的机会。几乎所有行业参与者都已开始在他们的设备中构建人工智能软件和硬件。这不是巧合。在我们的数字世界中,每天都会生成超过250万TB的数据。在手机领域,制造商认为他们可以将这些数据用于人工智能,以提供更加个性化、更快捷、更智能的服务。”
 
使用智能手机收集患者眼睛、皮肤损伤、伤口、感染、药物或其他受试者的图像可能有助于服务不足的地区解决专家短缺的问题,同时减少对某些投诉进行诊断的时间。
 
Shafiee说,“未来可能发生一些重大事件,我们可以利用这个机会来解决一些在护理点进行疾病管理的重要问题。”
 
12.利用床边人工智能革新临床决策
 
随着医疗保健行业转向收费服务,它也越来越远离被动性医疗。在慢性病、急性病事件和病情突然恶化发生之前进行预防是每个提供者的目标,补偿结构最终允许他们开发能够实现主动、预测性干预的流程。
 
人工智能将为这一进化提供许多基础技术,通过支持预测分析和临床决策支持工具,在提供者认识到采取行动的必要性之前解决问题。人工智能可以为癫痫病或败血症等疾病提供早期预警,这通常需要对高度复杂的数据集进行深入分析。
 
马萨诸塞州总医院(MGH)临床数据主任、医学博士Brandon Westover说,机器学习还可以帮助支持是否继续为重症患者提供护理,例如心脏骤停后进入昏迷状态的患者。
 
他解释说,在通常情况下,医生必须检查这些患者的脑电图数据。这一过程耗时并且主观性强,其结果可能因临床医生的技能和经验而有所不同。
 
他说。“在这些患者中,趋势可能正在缓慢发展。有时当医生想要查看某人是否正在恢复时,可能查看10秒钟监控一次的数据。但是,要想从24小时采集的10秒数据中看出它是否发生了变化,就像查看头发在此期间是否变长了一样。但是,如果采用人工智能算法和来自许多患者的大量数据,那么就可以更容易地将人们所看到的内容与长期模式相匹配,并且可能会发现一些细微的改进,这些改进会影响医生在护理方面的决策。”
 
利用人工智能技术进行临床决策支持、风险评分和早期预警是这种革命性的数据分析方法最有前景的发展领域之一。
 
通过为新一代工具和系统提供动力,使临床医生更加了解病情的细微差别,更有效地提供护理服务,更可能提前解决问题,人工智能将迎来提高临床治疗质量的新时代,并在患者护理方面取得令人兴奋的突破。

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读