每个数据科学家都应该了解的六个概率分布
发布时间:2021-08-22 19:36:14 所属栏目:大数据 来源:互联网
导读:介绍 假设你是一所大学的老师。在对一周的作业进行了检查之后,你给所有的学生打了分数。你把这些打了分数的论文交给大学的数据录入人员,并告诉他创建一个包含所有学生成绩的电子表格。但这个人却只存储了成绩,而没有包含对应的学生。 他又犯了另一个错误
为了简化计算,下面给出一些公式。
P{X≤x} = 1 – e-λx 对应于x左侧曲线下的面积。
PP{X>x} = e-λx 对应于x右侧曲线下的面积。
P{x1-λx1 – e-λx2, corresponds to the area under the density curve between x1 and x2.
P{x1-λx1 – e-λx2 对应于x1和x2之间地曲线下的面积。
3、各种分布之间的关系
伯努利与二项分布之间的关系
伯努利分布是具有单项试验的二项式分布的特殊情况。
伯努利分布和二项式分布只有两种可能的结果,即成功与失败。
伯努利分布和二项式分布都具有独立的轨迹。
泊松与二项式分布之间的关系
泊松分布在满足以下条件的情况下是二项式分布的极限情况:
试验次数***大或n → ∞。
每个试验成功的概率是相同的,***小的,或p → 0。
np = λ,是有限的。
正态分布与二项式分布之间的关系,以及正态分布与泊松分布之间的关系
正态分布是在满足以下条件的情况下二项分布的另一种限制形式:
试验次数***大,n → ∞。
p和q都不是***小。
正态分布也是参数λ → ∞的泊松分布的极限情况。
指数和泊松分布之间的关系
如果随机事件之间的时间遵循速率为λ的指数分布,则时间长度t内的事件总数遵循具有参数λt的泊松分布。
结束语
概率分布在许多领域都很常见,包括保险、物理、工程、计算机科学甚至社会科学,如心理学和医学。它易于应用,并应用很广泛。本文重点介绍了日常生活中经常能遇到的六个重要分布,并解释了它们的应用。现在,你已经能够识别、关联和区分这些分布了。
![]() (编辑:宿州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |