加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

人工智能芯片是个伪命题吗?

发布时间:2021-08-26 20:20:41 所属栏目:大数据 来源:互联网
导读:AI 芯片进入了市场检验期。 技术研发关卡无芯片不 AI。最近几年,业界萦绕着对摩尔定律失效的担忧。后摩尔定律时代,AI 芯片的崛起被寄予厚望。 AI 芯片一度站上了风口,热度空前,与此同时,挑战尤存。现阶段的 AI 芯片处在发展早期,尚有诸多技术痛点待攻
而另一方面,边缘侧市场空间更大,更容易给投资人“讲故事”,吸引资本的关注。据中金公司研究数据,2017 年,边缘计算 AI 芯片市场规模为 39.1 亿美元,到 2022 年,这一数字将增长至 352.2 亿美元,5 年或增长 10 倍。
近几年,边缘计算呈现出了巨大的增长需求,** 尤其在有大量数据并要求低延时响应的应用场景中。** 在边缘上做计算,具有数据处理更快速、实时业务处理、成本更低、网络带宽成本低、保护数据隐私安全等优势。
做边缘芯片,最难在于应用场景。 除自动驾驶场景较集中外,其他很多场景十分“碎片化”。AI 边缘芯片现阶段的主要挑战来源于边缘端算力需求的不一致,以及边缘算力平台的差异,导致边缘 AI 芯片的性能和功能需求难以统一界定。
王少军观察到,目前市场上出现了很多场景定义的专用芯片,“市场正朝着专业化、细分化方向发展,也说明,各领域出现了普遍性的行业落地需求,足以支撑专用 AI 芯片的发展,这对掌握了核心技术,能禁得住市场考验的 AI 芯片企业来说是一个好现象”。
另一趋势是,不少 AI 芯片公司越来越追求打造软硬件协同能力。不少原来做芯片的公司开始由硬件切入软件,有些算法公司开始深入硬件做布局。软硬件协同意味着更高的有效算力。
明确重要的落地场景是软硬件协同的前提;此外,一体化过程涉及软件和硬件两种不同技术团队间的协同,在磨合期团队要充分磨合,相关工具支持也得跟上。
软硬协同理念是从软件(算法)和硬件两个角度同时优化,从而实现性能的全局最优。在设计过程中,面临约束条件多且存在不确定性,设计空间大等挑战,导致最终结果很难得到最优解。要实现所有网络的最优,在技术上实现难度较大,为此,芯片设计应以有效加速大多数的算法为目标。
AI 芯片从未成功过?回溯 AI 芯片在国内的发展历程,2015-2016 年是业内公认的小高潮。卷积神经网络、深度学习的突破掀起了 AI 芯片的研究与创投热潮,深度学习方法在很大程度上约减了算法计算需求的多样性,为 AI 芯片提供了明确的技术可行性;算法精度的有效提升为 AI 行业落地提供了可能。
一时间,大批创业公司争相涌入,巨头公司加大投入力度,资本亦疯狂助推 ,尤其在 2018 年,AI 芯片大热,多家创企相继宣布获得融资。
2017-2019 年,在王少军看来是 AI 芯片技术和产品研发“百花齐放”的三年 — 市场端还是英伟达一家独大,涌现出了很多的新技术、新架构和新模式,AI 场景需求的定义更加清晰,云边端基本成为共识,但不同技术路线对不同场景的适应程度还没有被充分验证。
2019 年是芯片行业的转折点。资本寒冬、华为遭断供、多家科技企业被列入实体清单等事件凸显“卡脖子”危机,在国际形势不明朗的环境下,AI 芯片产业链添了不可测的发展变数,对于有技术实力、能完成替代的国内芯片公司来说,未尝不是一个发展的契机。
相较几年前,AI 芯片行业的热度已经下降了不少。当热度渐渐冷却下来,业界也开始反思 AI 芯片行业是否存在一些“概念炒作”、搞噱头、泡沫化的问题。艾瑞咨询在《2019 年 AI 芯片行业研究报告》中分析指出,当前 AI 芯片行业接近 Gartner 技术曲线泡沫顶端。
“最近这三四年 AI 芯片的发展状况,我觉得是‘泡沫’,站不住脚。泡沫主要体现在,AI 芯片是个伪命题,不是真实的需求。过去 20 多年来,有关人工智能硬件化的尝试,绝大多数都失败了,这里面可能存在一些共性的原因。到目前为止,我还没有感受到 AI 芯片在根本上的不一样。因此,我怀疑,在这次以深度学习为发端的 AI 浪潮背景下的 AI 芯片硬件化也会失败”。一位 AI 技术专家冯辉(化名)向 InfoQ 表达了他的判断,他认为,AI 芯片发展这么多年,从未成功过。
如何来定义 AI 芯片的“成功”?InfoQ 询问了多位受访专家的看法。多位专家对“从未成功”这一说法不甚认同。
在产品层面,历史上涌现了很多成功的 AI 芯片产品,例如 Google 的 TPU、HTPU,英伟达的 P100 GPU、高通的骁龙 AI 芯片等产品。
“如果单按这个(产品)标准,历史上那些 AI 芯片也算'成功'了”,冯辉补充道,“我认为,AI 芯片的成功与否,不在于是不是做出来,而在于是不是可用。这里的“可用”是指,相对于通用芯片,是否具有明显的成本优势”。
值得注意的是,在技术层面,由于 AI 芯片是技术上的新生事物,如何定义一款 AI 芯片在技术上取得了成功,目前业界并未形成统一的技术共识。“成功的定义或有不同,任何一个按照自己的技术理念成功流片的 AI 芯片公司,都可以认为在技术上是达到了一定程度的成功。除此之外,如何将自己产品的技术特性与市场需求场景充分适配,为目标市场提供不可替代性和更高性价比,进而有效落地,这个是基于商用化上的考量。”王少军说。
至于商业化上的成功,未来仍需要时间来验证。这在一定程度上取决于 AI 芯片落地速度,目前的环境给了有产品优势的芯片公司突破的机会。
经历了过去 5 年的快速发展后,2020 年,AI 芯片进入了研究与大规模化落地的关键一年。卢涛认为上半年的疫情对于 AI 芯片的落地利弊参半,利好是,疫情加速全球版数字化进程,加快数据中心等算力基础设施建设进程;挑战是,那些纷纷嚷嚷着自己要做 AI 处理器的公司能不能真的做出来,真的到场景中落下地去。如果没有真东西 “亮出来” ,后期持续的投入可能将面临巨大挑战。
‘讲故事’,拼技术理念、拼背景光环的时代已经过去了。
进入下半场的 AI 芯片到了市场验证期,到了拼产品效果、拼用户体验的时候。这将伴随着一场大的洗牌过程而展开,那些找不到落地场景,盈利能力不足,在技术和商业模式上不能提供核心价值的玩家可能最终将面临被淘汰出局的命运。“市场将会按照不同的行业保留 2-3 家头部公司,以及若干家有特色的中小公司”,王少军向 InfoQ 预测这场淘汰赛可能的终局。
不能忽视地是,AI 芯片尚处在稚嫩的“婴儿期”,快速成长难免伴随着“阵痛”,未来虽未知但可期。“我觉得现在应该是做芯片最好的时期,AI 芯片需要走的路特别长”,李智勇觉得,握住当下的机遇是最重要的。

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读