加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

企业数字化的AI转型,如何能少走弯路?

发布时间:2021-09-08 19:04:26 所属栏目:大数据 来源:互联网
导读:人类科学的发展可以分成四个关键阶段:实验科学 --理论科学--计算科学--数据科学,这也被称为四个范式,由1998年图灵奖获得者、美国资讯工程学家Jim Gray(詹姆斯尼古拉格雷)在《科学发展的四个范式》一文中提出。 第一范式,实验科学 。我们日常当中运用最
      
数据和AI可以渗透到各个角落去驱动业务的创新,如果暂时找不到变革之道,但还是要先尝试的话,至少要着重关注整个业务创新的效率如何,而不是盯在一个点上。
3.战略性决策:全面转型重塑,实现经营质变
战略性决策,通常来讲是企业的CEO等高级管理者要去做的。对企业经营者来讲,时刻要思考的问题是什么呢?就是在战略层面,企业下一步怎么去做,才能更好地生存和发展。
      
企业战略规划中,AI可以为核心要素。在AI助力下,重塑经营和管理模式,突破人力所限的增长瓶颈,产生经营质变。
转型在于做出选择。
在消费互联网行业,互联网对客户的流量竞争是不分领域的,它们都在争夺手机上的注意力时间;从产业互联网的角度上来讲,对优质从业者的流量争夺也是不分行业的。在这种竞争的情况下,战略转型的关键选择在于,是正确地运用AI决策的力量去重塑企业经营与管理,还是继续从前的金字塔形式。
把AI当成一种高维武器。
所以当我们讲到AI,不能把它简单当成一个降本增效的工具或手段,或者把它停留在一个高科技的概念里边,而是一定要用它作为一种高维武器去寻求质变,去赢得竞争,甚至是这个过程当中去发现更多的细分赛道,创造更多的价值。
转型路径
如何通过智能化转型,成为“下一代”企业?
1,转型中的两个误区
1)“演进式”陷阱:数字化进程四个步骤,要一步一步来?
      
我们通常会把整个数字化进程分成四个步骤:自动化信息化数字化智能化。很多人认为,这四个步骤要按先后,一步一步来。但这会陷入“演进式”陷阱,导致策略总是会大改大修,甚至重新架构。
正确的做法是,坚持“以终为始”的规则:以终为始,就是以智能化为目标,重新审视数字化的进程,这是很多企业在面临智能化转型要做的第一件事情。
要去占领下一代的高地,就要先知道我们要做的那件事的本质是什么,去想象未来的智能化企业到底是什么样子,沿着那个本质来判断我们转型的过程是不是沿着那个方向去走的,在大目标下进行实时的调整和修正。
2)智能化转型是一个项目吗?
我们要拥抱企业的智能化转型,成为下一代企业,但这并不代表从A到B这件事情就叫转型,而是首先从认知上跃迁到这个领域里,从零开始像一个小朋友一样一点一点长上去,最后长成巨人。
但至此并没有结束,而是依然需要继续优化。把智能化转型当成一个项目是常见的误区;它应该是基于企业未来的战略选择,需要持续经营的实践,非常依赖 “对的方法”和“对的人”。
2、智能化转型的“三驾马车”
成功实现智能化转型的企业,需要借助“三驾马车”:新方法、新组织和新工具。
      
新和旧是相比较而言的,旧指的是不能有效地利用数据及机器的闭环学习的技术手段(没有用到AI决策),反之则是新的体系。
1)新方法:顶层设计打破增长瓶颈,量变到质变
新的方法,首先就是顶层设计出发,打破增长的瓶颈,实现量变到质变。每个企业的瓶颈都不同,但是核心就在于找到这个瓶颈,让AI决策辅助企业去打破这个瓶颈,让机器的智能可以极致发挥作用。当你有了这个手段之后,要思考的是怎么和自己的业务相结合,而不是仅对着一个技术的指标去提升。
第二,转型一定是顶层设计出发,企业CEO要成为智能化转型的引领者。老板想不清楚,下面的人是更不可能想得清楚的。当行业过去的龙头要进入新的产业的时候,谁能够率先地利用更符合未来的管理体系和管理思路,谁就在未来的竞争当中更能够占据优势。
2)新组织
      
现在大家都面临着管理上的问题。新的组织,简单来说,需要三方力量的协调:企业CEO、业务团队、科技团队。
其中,CEO起到了引领者角色。因为变革始终需要领袖,而这个变革的领袖只能由CEO来担任。
新角色CAIO
      
企业AI智能化转型的第二个关键角色,就是CAIO(首席人工智能官)。CAIO体系下产生了新的业务技术组织:
首先由CEO来决定什么叫质变,然后CAIO、业务负责人和CTO形成三元组,这就是一个企业的智能化转型的作战指挥部。
对细分业务来讲,每个企业其实都有不同的北极星指标,所有的指标都有一个特点,它可能不是100%准确的,但一定要是100%可量化的,这是一个非常关键的点。因此我们对于新的组织,应该关注它的迭代过程。
      
AI的特性之一,就是它可以永续迭代。未来的创新应该是Top-down(自上而下的)的根据质变的目标,定下北极星指标,拆解成若干个要素,这些确定之后再去执行,继而不断优化。
新的组织与传统组织的区别
      
所以传统的技术组织和新的技术组织,一个本质的区别,对于传统的技术组织来讲,技术的最高负责人很难做到对业务目标的拆解,他不百分百了解某个业务是怎么做成的。于是,就先规划再实施,借助一些外部的力量或者内部力量,但难点就在于在今天不断变化的情况下,规划很难做到尽善尽美。
另一个问题,传统技术组织研究最大的重点就是这个设计对不对,总是要经历一轮、二轮、三轮等重重论证,但企业内外同时也在一直发展变化。
新的技术组织是什么样的呢?首先,它把整个企业的治理也变成一个机器学习模型。制定具体业务,其实就类似于设置一些参数,而后续迭代的过程,其实也是模型本身迭代优化的过程。所以整个企业的治理也变成了一个自我迭代的模型。
第二,它的核心就是在实施当中不断地进行优化,其中最核心的点就是不断优化目标,所以CEO在顶层设计里面对质变的定义特别重要。
第三,研究的重点是组织迭代的效率够不够高,而非设计的绝对正确。关键是要看进化的速度是不是够快,只要进化的速度比别人快,到最后就能够取得胜利。
3)新工具:数据、算力、人才形成合力,AutoML降低门槛
企业智能化转型实施中存在三个瓶颈数据、算力、人才,在新系统下,让三者形成合力,再通过AutoML技术(Automated Machine Learning 自动机器学习)来降低门槛。
      
数据。数据治理过程中,通常关键的问题就是:某环节数据缺失,或者整个过程没有形成一个闭环,一个闭环的过程应该包括行为数据、反馈数据、模型训练和模型应用。
行为数据和反馈数据,属于业务的事情,比如在个性化资讯推荐中,不但需要知道哪些新闻推送了哪些用户,还要知道用户的反馈,比如是否点击;模型训练和模型应用,则是技术团队的事情。
数据治理是要有灵魂的,是要跟业务密切相关的。新的架构需要以业务为核心,形成完整的数据闭环,实现持续治理。

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读