加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

赋能业务转型,人工智能需要这三大核心能力

发布时间:2021-09-26 18:38:19 所属栏目:大数据 来源:互联网
导读:人类的智慧宽广而复杂。有些人类成就远远超出现今机器可达的领域,要想让机器触及这些领域,还需要一段漫长的时间。对于解决抽象问题、概念生成、情绪知识、创造力甚至是自我认知,即便是最强有力的深度学习算法,也无法在这些领域与人类智慧相提并论。 把所
▲认知基于数据进行推理
严格来说,认知是获取和处理知识的能力。它包含人脑用于推理、理解、解决问题、计划和决策的高层次概念。
我们目前探索的技术包含了一定程度的认知,虽然有时不那么明显。以图像分类为例,如果我们仔细审视用于图像分类的深度神经网络,实际上就可以看出神经网络是如何在每一层将问题分解成更小的步骤的。
没有人工干预,神经网络自动展示了某种程度的概括:第一层检测简单的特性,如边缘或纹理。往更深层走,每一层都能够抽取更复杂的属性,如图案或元素。某种意义上,神经网络已经可以获取一些知识并使用这些知识做一些基础推理。
自然语言处理展示了类似的内在抽象。在其核心,大部分现代的NLP技术都使用了被称为词嵌入的技术。通过词嵌入技术,文本中的每个词都转换为一个代表单词含义的向量。在这个新的空间,语义相似的词(如“天气”和“预报”)彼此接近。
通过这种方式,系统会将“今天天气如何?”和“获取未来24小时的预报”匹配为相同的意图。即使词不同,它们的含义却是相似的,因为它们的语义相近。翻译也是相同的工作原理:翻译技术使用词嵌入来抽象输入的文本,将其转换为与语言无关的“想法”,再用反向流程将其翻译为任意一种语言。
在这些例子中,认知是感知的内在。然而,许多人工智能场景是单纯的认知。它们不专注于感知周围的世界,而是专注于抽象这个世界并基于抽象进行推理。一些最基础的有监督学习方法便是如此。回归分析是根据现有信息预测数值的能力,例如基于房屋的特征和位置评估其价值,或根据历史数据预估其销售额。
分类是根据物品自身特征对其分级或分类的能力,例如,判断一栋房屋是不是会被出售给某个特定的买家。优化算法则是基于流程进行推论,从而最大化某个特定的结果,比如在医院里分配资源。
推荐系统仅通过评分或购买习惯就能够找出电影、书籍或歌曲等物品间不为人知的共性。其他技术,如前所述,如聚类分析能找出数据中的模式,并以无监督方式对物品归类。
我们在强化学习技术中也能看到认知能力。2017年,蒙特利尔微软研究院(前马鲁巴岛)跨越了100万分大关,创造了吃豆人游戏的新纪录。该系统通过玩成千上万把游戏来实现自我训练。
同样地,在2018年,OpenAI Five(一个由五个神经网络组成的团队)在Dota2游戏中打败了人类队伍。OpenAI Five通过自我对战进行训练,每天的训练量相当于180年游戏时长。
最著名的例子应该是由Google DeepMind取得的成就:其系统AlphaGo第一次击败了一位9段围棋专业选手。相对于其他游戏(如象棋),围棋被认为是对电脑来说更为困难的游戏。
深入观察所有AI系统参与的游戏,你会觉得它们展现出了认知的另外一种特征计划。系统能够提前“思考”最佳的方式来获得长期看来最大化的分数。

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读