加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

让谷歌折戟的人工智能流行病预测,在今天如何被创业公司攻占?

发布时间:2021-09-29 18:36:55 所属栏目:大数据 来源:互联网
导读:预测未知,一直是人类十分向往的能力。远不说国人熟悉的周易八卦、唐代道士编写的《推背图》,还有西方人熟知的占星术、中世纪流行起来的塔罗牌,近的比如说当年根据 2012世界末日这一玛雅预言影响下出现的全民狂热和商业狂欢,依然让我们记忆犹新。 现在不
所以,在2014年的《Science》论文中指出,会出现GFT在预测2007-2008年流感流行率时,存在丢掉一些看似古怪的搜索词,而用另外的5000万搜索词去拟合1152个数据点的情况。2009年之后,GFT要预测的数据就将面临更多未知变量的存在,包括它自身的预测也参与到了这个数据反馈当中。无论GFT如何调整,它仍然要面对过度拟合问题,使得系统整体误差无法避免。
BlueDot采取了另外一项策略,即医疗、卫生专业知识和人工智能、大数据分析技术结合的方式,去跟踪并预测流行传染病在全球分布、蔓延的趋势,并给出最佳解决方案。
      
BlueDot主要采用自然语言处理和机器学习来提升该监测引擎的效用。随着近几年算力的提升以及机器学习,从根本上彻底改变了统计学预测的方法。主要是深度学习(神经网络)的应用,采用了“反向传播”的方法,可以从数据中不断训练、反愧学习,获取“知识”,经过系统的自我学习,预测模型会得到不断优化,预测准确性也在随着学习而改进。而模型训练前的历史数据输入则变得尤为关键。足够丰富的带特征数据是预测模型得以训练的基矗经过清洗的优质数据和提取恰当标注的特征成为预测能否成功的重中之重。
二、预测模式差异
与GFT完全将预测过程交给大数据算法的结果的方式不同,BlueDot并没有完全把预测交给AI监测系统。BlueDot是在数据筛选完毕后,会交给人工分析。这也正是GFT的大数据分析的“相关性”思维与BlueDot的“专家经验型”预测模式的不同。
AI所分析的大数据是选取特定网站(医疗卫生、健康疾病新闻类)和平台(航空机票等)的信息。而AI所给出的预警信息也需要相关流行病学家的再次分析才能进行确认是否正常,从而评估这些疫情信息能否第一时间向社会公布。
当然,就目前这些案例还不能说明BlueDot在预测流行病方面已经完全取得成功。首先,AI训练模型是否也会存在一些偏见,比如为避免漏报,是否会过分夸大流行病的严重程度,因而再次出现“狼来了”的问题?其次,监测模型所评估的数据是否有效,比如BlueDot谨慎使用社交媒体的数据来避免过多的“噪音”?
      
幸而BlueDot作为一家专业的健康服务平台,他们会比GFT更关注监测结果的准确性。毕竟,专业的流行病专家是这些预测报告的最终发布人,其预测的准确度直接会影响其平台信誉和商业价值。这也意味着,BlueDot还需要面临如何平衡商业化盈利与公共责任、信息开放等方面的一些考验。
AI预测流行病爆发,仅仅是序曲……
“发出第一条武汉冠状病毒警告的是人工智能?”媒体的这一标题确实让很多人惊讶。在全球一体化的当下,任何一地流行疾病的爆发都有可能短时间内传遍全球任何一个角落,发现时间和预警通报效率就成为预防流行疾病的关键。
如果AI能够成为更好的流行病预警机制,那不失为世界卫生组织(WHO)以及各国的卫生健康部门进行流行病预防机制的一个办法。
那这又要涉及到这些机构组织如何采信AI提供的流行病预报结果的问题。未来,流行病AI预测平台还必须提供流行病传染风险等级,以及疾病传播可能造成的经济、政治风险的等级的评估,来帮助相关部门做出更稳妥的决策。而这一切,仍然需要时间。这些组织机构在建立快速反应的流行病预防机制中,也应当把这一AI监测系统提上日程了。
可以说,此次AI对流行病爆发提前成功地预测,是人类应对这场全球疫情危机的一抹亮色。希望这场人工智能参与的疫情防控的战役只是这场持久战的序曲,未来应该有更多可能。比如,主要传染病病原体的AI识别应用;基于主要传染病疫区和传染病的季节性流行数据建立传染病AI预警机制;AI协助传染病爆发后的医疗物资的优化调配等。这些让我们拭目以待。

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读