前百度员工在美读博5年:告诉你什么才是深度学习
Alex跟我说,你去读读Jure Leskovec的文章,学学人家怎么讲故事。我在Google也尝试用了些用户GPS数据来对用户行为建模。可是写文章的时候怎么也写不出Jure的那种故事感,发现自己不是那块料。这篇文章因为用了用户数据,恰逢Snowden让大家意识到隐私的重要性,历经艰辛删了一半结果Google才允许发出来。有些累觉不爱。 不过在Google期间我主要时间花在研究内部代码和文档上。Google的基础架构很好,文档也很健全。虽然没有直接学到了什么,但至少是开了眼界。 第二年:9/13-8/14 这学期上了Tuomas Sandholm的机制设计,此乃另一大神,例如最近德州扑克赢了专业选手,之前开公司也卖了上亿。不过这门课我是完完全全没学懂,连承诺的课程大作业都没怎么做出来。之后的两年里我一遇到Tuomas他都会问下有什么进展没。我只能远远看见他就绕开。 NIPS被拒了,发现审稿人不懂线程和进程的区别,有点沮丧。隔壁实验室一篇想法类似但简单很多的论文倒是中了oral,所以那阵子压力很大。Alex安慰说这种事情常有发生,看淡点,然后举了很多自己的例子。 之后想了想,一篇好文章自然需要有足够多的“干货”,或者说信息量, 但一篇能被接受的文章需要满足下面这个公式: 文章的信息量 / 文章的易读性 对于机器学习会议,因为投稿量大,所以审稿人很多自然平均水平就会下降。而且很多审稿人就花半个小时到一个小时来读文章,所以公式右边数值通常是很小,而且不是我们能控制。 如果文章的信息量不大,例如是改进前面工作或者一些简单的新想法,那么公式成立的概率很大。而对于信息量大的文章,就需要努力提升易读性,包括清晰的问题设定,足够的上下文解释等等。而前面投的那篇NIPS,以及更早的那个被拒工作,就是因为我们假设了审稿人有足够多的相关专业知识,而我们塞进了太多干货使得大家都读糊涂了。 即使对于已经发表的文章,上面那个公式同样可以用来衡量一篇论文的引用率。例如经常见到干货很多的文章没有什么人引用,而同时期的某些工作就是考虑了其中简单特殊情况结果被大引特引。 接下来的半年我主要在做一个通用的分布式机器学习框架,是想以后做实验方便些。名字就叫parameter server,沿用了Alex 10年论文提出的名字。花了很多时间在接口设计上,做了好几个版本实现,也跑了些工业界级别的大规模的实验。 不过真正花了我大量时间的是在写论文上。目标是把这个工作投到OSDI上,OSDI是系统界两大会之一。我们预计审稿人跟Dave两年前状态差不多,不会有太多机器学习和数学背景,所以需要尽量的少用公式。整整一个月就花在写论文上,14页的文章满满都是文字和示意图。不过努力没有白费,最终论文被接受了。随后又花了好几周准备大会报告上。相对于平时花一周写论文,两三天准备报告,这次在写作和报告水平上有了很大的提升。没有放进去的公式和定理投了接下来的NIPS,这次运气很好的中了。 有了文章后稍微心安了点可以更自由的做些事情。 (编辑:宿州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |