加入收藏 | 设为首页 | 会员中心 | 我要投稿 宿州站长网 (https://www.0557zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 业界 > 正文

AIOps中的四大金刚都是谁,职责和技能有哪些变化?

发布时间:2018-11-28 12:12:37 所属栏目:业界 来源:今日头条
导读:副标题#e# 智能运维,即AIOps(Artificial Intelligence for IT Operations),是将人工智能的能力与运维相结合,通过机器学习的方法来提升运维效率。 在传统的自动化运维体系中,重复性运维工作的人力成本和效率问题得到了有效解决。但在复杂场景下的故障处

如单机房故障自愈场景中的介绍,运维AI工程师需要具备机器学习知识并将其在运维领域落地的能力。运维AI工程师的职责如下:

智能运维|AIOps中的四大金刚都是谁?

平台研发工程师

在单机房故障自愈场景中,平台研发工程师需要关注三类平台的建设。如图所示:

智能运维|AIOps中的四大金刚都是谁?

基础运维平台:提供单机房故障自愈场景中的依赖平台,如:监控平台和流量调度平台。在日常运维中提供标准化运维数据获取和运维操作的基础,而在AIOps中,这部分接口需要能够同时支持人工和自动的数据获取和运维操作。

智能运维平台:提供对AI能力的支持,如:统一的数据服务(运维知识库)、运维开发框架,以及给AI策略实验和运行的运维策略框架等。

故障自愈机器人:针对单个业务场景进行平台化抽象,使之成为一个基础服务,基于AIOps平台研发和运行。

AIOps时代的职责和技能变化

平台研发工程师负责运维平台及基础组件的研发与建设。

在传统运维场景中,平台研发工程师负责平台、基础组件、类库和工具的研发工作。在针对运维的场景中,会覆盖与运维相关的服务管理、监控、变更、流量调度等平台。

智能运维|AIOps中的四大金刚都是谁?

这部分平台是运维的基础,在AIOps时代仍然需要依赖于这些平台的建设。

同时在AIOps场景中,数据成为了中心,,运维各种状态信息转换为大数据,机器学习则作用在大数据上进行分析。在百度AIOps的实践中,运维开发框架、运维知识库、运维策略框架共同组成了完整的智能运维平台,三大平台的建设和实施离不开大数据、机器学习架构的引入。

这就要求平台研发工程师具备大数据、机器学习平台架构师的多重身份,具备流式计算、分布式存储、机器学习平台、算法策略平台等一系列大数据和机器学习平台架构能力。

智能运维|AIOps中的四大金刚都是谁?

运维研发工程师

基于多个业务线场景抽象出的单机房故障自愈解决方案,能够满足大部分场景需求,但并不意味着可以直接提供给各个业务线来使用。原因如下:

策略和参数需要进行调整

流量调度、容灾策略等策略,针对不同的业务线,配置并不相同。例如某些业务对响应时间敏感,跨地域的调度会带来较大的延迟,影响用户体验,这时就需要根据业务情况配置机房之间的跨机房流量调度延迟系数,来实现流量优先调度到延迟系数最低的机房。

通用框架无法满足所有需求

部分业务线需要对原有的策略进行部分重写才能够满足需求。例如,部分业务在流量调度时,需要联动服务降级来满足容量需求,这就需要额外增加服务降级联动的逻辑。

那么,就需要运维研发工程师出手来解决这个问题。根据业务线的实际情况,对策略和参数进行配置和调优,对通用框架无法满足的需求,进行定制化研发,使得单机房故障自愈方案能够实际应用在不同业务线上。

AIOps时代的职责和技能变化

(编辑:宿州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读