央财智库:AI产业研究,行业拐点将至,不同AI公司价值几何?
发布时间:2021-10-06 18:30:03 所属栏目:大数据 来源:互联网
导读:1. 人工智能产业进入深水区,技术发展推动场景化落地 1.1 政策、技术、资本三轮驱动行业发展,中美领跑 过去十年全球人工智能发展迅速,各国纷纷从战略上布局人工智能,加强 顶层设计和人才培养。我国 2017 年《新一代人工智能发展规划》发布, 明确提出三步
1. 人工智能产业进入深水区,技术发展推动场景化落地
1.1 政策、技术、资本三轮驱动行业发展,中美领跑
过去十年全球人工智能发展迅速,各国纷纷从战略上布局人工智能,加强 顶层设计和人才培养。我国 2017 年《新一代人工智能发展规划》发布, 明确提出“三步走”的战略目标,人工智能全面上升为国家战略。2017 年 10 月,人工智能写入十九大报告;17 年 12 月,《促进新一代人工智能产 业发展三年行动计划(2018-2020 年)》;18 年 3 月,人工智能再次被写入 政府工作报告。政策密集出台,行业进入发展黄金阶段。2016 年,美国国家科学技术委员会(NSTC)发布《国家人工智能研发战 略计划》全面布局人工智能发展。2019 年 2 月,美国总统特朗普签署行政 命令,正式启动美国人工智能计划,为美国首次推出国家层面的人工智能 促进计划。欧盟于 2018 年发布《欧盟人工智能战略》,并计划在 2020 年 底至少投入 200 亿欧元。从专利数量、AI 学者分部等情况看,中美领跑。
全球主流技术大多处于泡沫到低谷期的过渡阶段,小样本学习是重要发展 方向。根据 Gartner 发布的 2020 年人工智能技术成熟度曲线,GPU 加速器成熟度最高,将在 2 年内达到成熟期。机器学习、聊天机器人、计算机 视觉和 FPGA 加速器技术处于低谷期,自然语言处理、深度神经网络和人 工智能云服务即将结束泡沫期迈入低谷期,提升技术的可复用性、扩展性 和安全性才能实现二次繁荣。传统深度学习需要大量有标注的数据样本, 数据较难获得且对算力要求高。小样本学习基于少量数据实现模型训练, 是未来发展方向,当前在图像检索、人脸识别等领域已经得到应用。
计算机视觉、语音识别和自然语言处理是当前中国市场规模最大的技术。计算机视觉市场目前已在人脸识别、工业视觉、OCR 和内容理解等领域获 得重大突破,面临视频爆炸下海量视频数据处理需求以及重点落地场景对 技术精度的需求。语音技术市场份额仅次于计算机视觉,技术链日趋完善, 在语音输入、语音转文字、智能家居等领域已有成熟应用,未来需适应更 复杂的应用场景,满足新型人机交互范式和互联网应用需求。自然语言处 理受益于神经网络技术和深度学习的发展,在机器翻译、对话系统等场景 广泛应用,未来需提升文本理解的精度和深度,优化语言生产与表达质量。
人工智能产业链参与者众多,商业模式、场景化落地成为核心竞争焦点。以 BATH 为首的科技巨头、字节跳动等互联网公司、AI 四小龙为典型的 AI 算法提供商,寒武纪等创业公司独角兽作为 AI 芯片提供商,以及海康威视、 大华股份、科大讯飞等综合解决方案提供商是行业的核心参与者,在产业 链上下游群雄逐鹿,多有布局。人工智能产业链包括三层:基础层、技术 层和应用层。从基础层和技术层来看,人工智能三大核心要素数据、算法 和算力已相对成熟,场景化落地成为核心竞争力。
资本市场短期遇冷,主要与前期预期过高与行业发展遭遇瓶颈有关。据 IT 橘子与深圳市人工智能行业协会统计数据,中国 AI 行业融资规模与投融资 数量 2013-2018 年整体快速增长,但 2019 年出现 45%左右的显著下滑, 2020 年投融资金额恢复 42.5%正增长,但距 2018 年颠覆时期仍有差距, 投融资数量仍有下降。一级市场曾被广泛看好的 AI四小龙 IPO 进程并非一 帆风顺,今年 7 月 2 日依图科技主动撤回申报,暂停科创板上市;旷视科 技在港交所碰壁后转战科创板,仅云从科技在 7 月 20 日成功过会,8 月 27 日商汤科技申请登录港股。我们认为资本市场早期对于人工智能行业回 报周期过于乐观,以及市场对当前创业型 AI 公司商业落地和变现模式存疑 是近两年资本市场遇冷的主要原因。
1.2 行业发展进入深水区,商业模式为主要瓶颈
AI行业发展进入深水区,从 AI公司财务表现、资本市场融资情况可见一斑。我们认为商业模式和变现能力是行业发展的主要瓶颈。
人工智能的概念形成于 20 世纪 50 年代,诞生于 1956 年的达特茅斯会议。其发展阶段经历三次浪潮:1)50-60 年代注重逻辑推理的机器翻译时代, 机器人和智能软件开始出现;2)70-80 年代依托知识积累构建模型的专家 系统时代,但由于缺乏实用性,行业很快趋冷;3)2006 年起深度学习算 法的推出,开始了重视数据、自主学习的认知智能时代。在数据、算法和 计算力条件成熟的条件下,本次人工智能的爆发浪潮中技术开始落地,深 入到应用层面,帮助传统行业创造切实经济效果。截至今天,主要的算法 工具仍基于深度学习,从算法角度看行业并未实现巨大的技术突破。
实战落地场景分散,产品标准化程度低。早期 AI 公司重视算法精度提升, 然而算法走出实验室环境,对具体的场景适应能力仍有差距。如:人脸识 别技术易受静态和动态、是否化妆、有无戴口罩等外部因素影响。数据是 模型训练的重要生产资料,纯 AI 技术公司缺乏对业务场景的理解和高质量 的业务数据所有权,需要与数字化程度高、数据资源丰富的客户合作,政 企客户成为重要起点。以数字化程度最高的公安和金融为例,客户需要的 非单个模块或开发包,也不具备 SDK 集成能力,而是一整套定制化的解决 方案。不同业务应用无法规模化,使 AI 算法公司业务变重。以海康威视为 代表的的传统安防厂商转型 AI 成功,正是基于业务场景的理解和数据积淀。
知识产权和伦理问题也是导致行业发展瓶颈的重要原因。我国当前知识产 权保户环境不成熟,抄袭成本低,难以形成无形资产的价值体系。全球主 要深度学习算法框架开源以后同质化竞争严重,Google 的 TensorFlow 与 Facebook 的 PyTorch 在全球占据 90%市场份额。在一些涉及生命安全等 方向的应用场景,伦理问题成为制约因素。如:根据产业链调研数据,医 疗行业 AI 读片识别准确率约 70%,高于人工肉眼识别准确率(约 40%), 但人工智能误诊的责任归属存在分歧;自动驾驶场景大概率维持在 L2 级, 技术装备水平高的车型声称 L2.5 等,难以实现 L3 级的跨越,主要也是因 为车祸责任归属问题。
各种因素综合,使 AI 算法公司的商业模式和变现能力受到挑战。AI 四小 龙上市招股书显示亏损严重。高定制化开发难以通过规模化复制降低成本, 缺乏数据所有权和对业务场景的理解降低客户界面议价能力,激烈的市场 竞争提高人力成本、降低人均效益。资本市场遇冷也在情理之中。
1.3 风物长宜放眼量,长期看 AI 市场空间广阔
虽然短期内 AI 行业遇冷,但长期看市场空间广阔。根据 2017 年国务院 《新一代人工智能发展规划的通知》的“三步走”战略目标,到 2020 年 人工智能总体技术和应用与世界先进水平同步,产业竞争力进入国际第一 方阵,核心产业规模超过 1500 亿元,带动相关产业规模超过 1 万亿元;到 2025 年 AI 基础理论实现重大突破,并进入全球价值链高端,核心产业 规模超过 4000 亿元,带动相关产业规模超过 5 万亿元;到 2030 年理论、 技术与应用总体达到世界领先水平,核心产业规模超过 1 万亿元,带动相 关产业规模超过 10 万亿元。市场空间非常广阔。
AI 市场主要构成有 AI 芯片、硬件、软件等,2025 年规模有望超千亿美元。2019 年中国市场 AI 服务器出货量 7.9 万台,未来 5 年 CAGR 约 20%。假设数据中心单台服务器平均售价约 7 万美元,可配 8 张 GPU 芯片卡,每张卡单价约 5 万元人民币,则 2025 年中国 AI 服务器 市场规模约 165 亿美元。当前 AI 服务器大约占 AI 硬件市场 85%份额,未 来更多边缘侧计算设备接入,假设 AI 服务器占比下降至 80%,则 2025 年 AI 硬件市场规模 206 亿美元。
GPU 卡出货量约 188 万片。AI 芯片主要用 于数据中心服务器,但在车载计算单元、边缘及终端设备等也有广泛使用, 产品形态丰富,单价相对较低,保守估计 AI芯片市场规模约 200 亿美元。当前 AI 软件占比较低,约 30%-40%,预计未来软件及服务占比能提升到 60%+,2025 年中国 AI总体市场规模有望超 1000 亿美元。
5G、云计算等技术进步推动 AI 协同发展。AI 深度学习算法依赖数据,高 数字化程度的行业拥有较密集数据资源,成为 AI 优先落地的领域。云化是 智能化的基础,行业数字化还需遵循 C>B>A 的路径,即先云化,再 有大数据最后实现智能化。大带宽、低时延、万物互联的 5G 网络有望带 动流量和数据量爆发,我们认为 5G 网络杀手级应用在当前建网阶段尚未 出现,2C 端 VR/AR 和 2B 端工业互联网或许是两个孵化方向。云计算与 5G 技术推广、渗透率提升有望推动更多人工智能场景落地。
深度学习框架是战略制高点,同样具备国产化替代机遇。深度学习框架作 为底层语言和算法模型的骨架,将数据、算力、算法三者相连接,向下对 接芯片(算力),向上支撑应用,可省去开发者从 0 到 1 地搭建地基的成本, 提高开发效率,与 AI 芯片构成 AI 基础设施底座,是“智能时代的操作系统”。如今 TensorFlow 和 PyTorch 占据全球主要市场份额,但开发端的需 求动态化、多元化,没有一个框架可以满足全部市场需求,也不断出现挑 战者,即:后来者仍有机会突围。当前中国的 AI 训练严重依赖美国的开源 框架,数据安全存在隐患,在中美关系影响下或提前生变。
更多的 AI 人才供给或降低人力成本,提升人均效益。AI 四小龙持续亏损 的原因之一在于人力成本过高。特别是高度定制化的碎片场景,需要较多 人力投入,导致人均效益低。经测算,AI 行业人均费用约 50 万,与人均 收入相当。海康威视之所以能在安防行业跑通 AI 商业模式,一方面是安防 行业数据量大、业务场景明确,另一方面是人效优势叠加规模化效应使公 司将“成本三低”做到极致:平均人力成本低、运营和销售成本低、产量 扩大后边际成本低。随着 AI人才供给增加,人力成本下降,AI 技术公司盈 利和变现能力提升,或能改变行业结构,使行业拐点前。 (编辑:宿州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |